3.2333 \(\int \frac{(1-2 x)^{3/2} \sqrt{3+5 x}}{(2+3 x)^3} \, dx\)

Optimal. Leaf size=120 \[ -\frac{\sqrt{5 x+3} (1-2 x)^{3/2}}{6 (3 x+2)^2}+\frac{41 \sqrt{5 x+3} \sqrt{1-2 x}}{36 (3 x+2)}+\frac{4}{27} \sqrt{10} \sin ^{-1}\left (\sqrt{\frac{2}{11}} \sqrt{5 x+3}\right )-\frac{793 \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{5 x+3}}\right )}{108 \sqrt{7}} \]

[Out]

-((1 - 2*x)^(3/2)*Sqrt[3 + 5*x])/(6*(2 + 3*x)^2) + (41*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/(36*(2 + 3*x)) + (4*Sqrt[1
0]*ArcSin[Sqrt[2/11]*Sqrt[3 + 5*x]])/27 - (793*ArcTan[Sqrt[1 - 2*x]/(Sqrt[7]*Sqrt[3 + 5*x])])/(108*Sqrt[7])

________________________________________________________________________________________

Rubi [A]  time = 0.0420847, antiderivative size = 120, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.269, Rules used = {97, 149, 157, 54, 216, 93, 204} \[ -\frac{\sqrt{5 x+3} (1-2 x)^{3/2}}{6 (3 x+2)^2}+\frac{41 \sqrt{5 x+3} \sqrt{1-2 x}}{36 (3 x+2)}+\frac{4}{27} \sqrt{10} \sin ^{-1}\left (\sqrt{\frac{2}{11}} \sqrt{5 x+3}\right )-\frac{793 \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{5 x+3}}\right )}{108 \sqrt{7}} \]

Antiderivative was successfully verified.

[In]

Int[((1 - 2*x)^(3/2)*Sqrt[3 + 5*x])/(2 + 3*x)^3,x]

[Out]

-((1 - 2*x)^(3/2)*Sqrt[3 + 5*x])/(6*(2 + 3*x)^2) + (41*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/(36*(2 + 3*x)) + (4*Sqrt[1
0]*ArcSin[Sqrt[2/11]*Sqrt[3 + 5*x]])/27 - (793*ArcTan[Sqrt[1 - 2*x]/(Sqrt[7]*Sqrt[3 + 5*x])])/(108*Sqrt[7])

Rule 97

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a + b
*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p)/(b*(m + 1)), x] - Dist[1/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n
- 1)*(e + f*x)^(p - 1)*Simp[d*e*n + c*f*p + d*f*(n + p)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && LtQ[m
, -1] && GtQ[n, 0] && GtQ[p, 0] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p] || IntegersQ[p, m + n])

Rule 149

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^(p + 1))/(b*(b*e - a*f)*(m + 1)), x] - Dist[1
/(b*(b*e - a*f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[b*c*(f*g - e*h)*(m + 1) + (
b*g - a*h)*(d*e*n + c*f*(p + 1)) + d*(b*(f*g - e*h)*(m + 1) + f*(b*g - a*h)*(n + p + 1))*x, x], x], x] /; Free
Q[{a, b, c, d, e, f, g, h, p}, x] && LtQ[m, -1] && GtQ[n, 0] && IntegerQ[m]

Rule 157

Int[(((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/((a_.) + (b_.)*(x_)), x_Symbol]
 :> Dist[h/b, Int[(c + d*x)^n*(e + f*x)^p, x], x] + Dist[(b*g - a*h)/b, Int[((c + d*x)^n*(e + f*x)^p)/(a + b*x
), x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x]

Rule 54

Int[1/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]), x_Symbol] :> Dist[2/Sqrt[b], Subst[Int[1/Sqrt[b*c -
 a*d + d*x^2], x], x, Sqrt[a + b*x]], x] /; FreeQ[{a, b, c, d}, x] && GtQ[b*c - a*d, 0] && GtQ[b, 0]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{(1-2 x)^{3/2} \sqrt{3+5 x}}{(2+3 x)^3} \, dx &=-\frac{(1-2 x)^{3/2} \sqrt{3+5 x}}{6 (2+3 x)^2}+\frac{1}{6} \int \frac{\left (-\frac{13}{2}-20 x\right ) \sqrt{1-2 x}}{(2+3 x)^2 \sqrt{3+5 x}} \, dx\\ &=-\frac{(1-2 x)^{3/2} \sqrt{3+5 x}}{6 (2+3 x)^2}+\frac{41 \sqrt{1-2 x} \sqrt{3+5 x}}{36 (2+3 x)}-\frac{1}{18} \int \frac{-\frac{371}{4}-40 x}{\sqrt{1-2 x} (2+3 x) \sqrt{3+5 x}} \, dx\\ &=-\frac{(1-2 x)^{3/2} \sqrt{3+5 x}}{6 (2+3 x)^2}+\frac{41 \sqrt{1-2 x} \sqrt{3+5 x}}{36 (2+3 x)}+\frac{20}{27} \int \frac{1}{\sqrt{1-2 x} \sqrt{3+5 x}} \, dx+\frac{793}{216} \int \frac{1}{\sqrt{1-2 x} (2+3 x) \sqrt{3+5 x}} \, dx\\ &=-\frac{(1-2 x)^{3/2} \sqrt{3+5 x}}{6 (2+3 x)^2}+\frac{41 \sqrt{1-2 x} \sqrt{3+5 x}}{36 (2+3 x)}+\frac{793}{108} \operatorname{Subst}\left (\int \frac{1}{-7-x^2} \, dx,x,\frac{\sqrt{1-2 x}}{\sqrt{3+5 x}}\right )+\frac{1}{27} \left (8 \sqrt{5}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{11-2 x^2}} \, dx,x,\sqrt{3+5 x}\right )\\ &=-\frac{(1-2 x)^{3/2} \sqrt{3+5 x}}{6 (2+3 x)^2}+\frac{41 \sqrt{1-2 x} \sqrt{3+5 x}}{36 (2+3 x)}+\frac{4}{27} \sqrt{10} \sin ^{-1}\left (\sqrt{\frac{2}{11}} \sqrt{3+5 x}\right )-\frac{793 \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{3+5 x}}\right )}{108 \sqrt{7}}\\ \end{align*}

Mathematica [A]  time = 0.123106, size = 121, normalized size = 1.01 \[ \frac{-21 \sqrt{5 x+3} \left (270 x^2+17 x-76\right )-112 \sqrt{10-20 x} (3 x+2)^2 \sin ^{-1}\left (\sqrt{\frac{5}{11}} \sqrt{1-2 x}\right )-793 \sqrt{7-14 x} (3 x+2)^2 \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{5 x+3}}\right )}{756 \sqrt{1-2 x} (3 x+2)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[((1 - 2*x)^(3/2)*Sqrt[3 + 5*x])/(2 + 3*x)^3,x]

[Out]

(-21*Sqrt[3 + 5*x]*(-76 + 17*x + 270*x^2) - 112*Sqrt[10 - 20*x]*(2 + 3*x)^2*ArcSin[Sqrt[5/11]*Sqrt[1 - 2*x]] -
 793*Sqrt[7 - 14*x]*(2 + 3*x)^2*ArcTan[Sqrt[1 - 2*x]/(Sqrt[7]*Sqrt[3 + 5*x])])/(756*Sqrt[1 - 2*x]*(2 + 3*x)^2)

________________________________________________________________________________________

Maple [B]  time = 0.011, size = 191, normalized size = 1.6 \begin{align*}{\frac{1}{1512\, \left ( 2+3\,x \right ) ^{2}}\sqrt{1-2\,x}\sqrt{3+5\,x} \left ( 7137\,\sqrt{7}\arctan \left ( 1/14\,{\frac{ \left ( 37\,x+20 \right ) \sqrt{7}}{\sqrt{-10\,{x}^{2}-x+3}}} \right ){x}^{2}+1008\,\sqrt{10}\arcsin \left ({\frac{20\,x}{11}}+1/11 \right ){x}^{2}+9516\,\sqrt{7}\arctan \left ( 1/14\,{\frac{ \left ( 37\,x+20 \right ) \sqrt{7}}{\sqrt{-10\,{x}^{2}-x+3}}} \right ) x+1344\,\sqrt{10}\arcsin \left ({\frac{20\,x}{11}}+1/11 \right ) x+3172\,\sqrt{7}\arctan \left ( 1/14\,{\frac{ \left ( 37\,x+20 \right ) \sqrt{7}}{\sqrt{-10\,{x}^{2}-x+3}}} \right ) +448\,\sqrt{10}\arcsin \left ({\frac{20\,x}{11}}+1/11 \right ) +5670\,x\sqrt{-10\,{x}^{2}-x+3}+3192\,\sqrt{-10\,{x}^{2}-x+3} \right ){\frac{1}{\sqrt{-10\,{x}^{2}-x+3}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1-2*x)^(3/2)*(3+5*x)^(1/2)/(2+3*x)^3,x)

[Out]

1/1512*(1-2*x)^(1/2)*(3+5*x)^(1/2)*(7137*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))*x^2+1008*1
0^(1/2)*arcsin(20/11*x+1/11)*x^2+9516*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))*x+1344*10^(1/
2)*arcsin(20/11*x+1/11)*x+3172*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))+448*10^(1/2)*arcsin(
20/11*x+1/11)+5670*x*(-10*x^2-x+3)^(1/2)+3192*(-10*x^2-x+3)^(1/2))/(-10*x^2-x+3)^(1/2)/(2+3*x)^2

________________________________________________________________________________________

Maxima [A]  time = 3.6264, size = 136, normalized size = 1.13 \begin{align*} \frac{2}{27} \, \sqrt{10} \arcsin \left (\frac{20}{11} \, x + \frac{1}{11}\right ) + \frac{793}{1512} \, \sqrt{7} \arcsin \left (\frac{37 \, x}{11 \,{\left | 3 \, x + 2 \right |}} + \frac{20}{11 \,{\left | 3 \, x + 2 \right |}}\right ) + \frac{5}{9} \, \sqrt{-10 \, x^{2} - x + 3} + \frac{{\left (-10 \, x^{2} - x + 3\right )}^{\frac{3}{2}}}{2 \,{\left (9 \, x^{2} + 12 \, x + 4\right )}} - \frac{29 \, \sqrt{-10 \, x^{2} - x + 3}}{36 \,{\left (3 \, x + 2\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(3/2)*(3+5*x)^(1/2)/(2+3*x)^3,x, algorithm="maxima")

[Out]

2/27*sqrt(10)*arcsin(20/11*x + 1/11) + 793/1512*sqrt(7)*arcsin(37/11*x/abs(3*x + 2) + 20/11/abs(3*x + 2)) + 5/
9*sqrt(-10*x^2 - x + 3) + 1/2*(-10*x^2 - x + 3)^(3/2)/(9*x^2 + 12*x + 4) - 29/36*sqrt(-10*x^2 - x + 3)/(3*x +
2)

________________________________________________________________________________________

Fricas [A]  time = 1.59465, size = 405, normalized size = 3.38 \begin{align*} -\frac{793 \, \sqrt{7}{\left (9 \, x^{2} + 12 \, x + 4\right )} \arctan \left (\frac{\sqrt{7}{\left (37 \, x + 20\right )} \sqrt{5 \, x + 3} \sqrt{-2 \, x + 1}}{14 \,{\left (10 \, x^{2} + x - 3\right )}}\right ) + 112 \, \sqrt{10}{\left (9 \, x^{2} + 12 \, x + 4\right )} \arctan \left (\frac{\sqrt{10}{\left (20 \, x + 1\right )} \sqrt{5 \, x + 3} \sqrt{-2 \, x + 1}}{20 \,{\left (10 \, x^{2} + x - 3\right )}}\right ) - 42 \,{\left (135 \, x + 76\right )} \sqrt{5 \, x + 3} \sqrt{-2 \, x + 1}}{1512 \,{\left (9 \, x^{2} + 12 \, x + 4\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(3/2)*(3+5*x)^(1/2)/(2+3*x)^3,x, algorithm="fricas")

[Out]

-1/1512*(793*sqrt(7)*(9*x^2 + 12*x + 4)*arctan(1/14*sqrt(7)*(37*x + 20)*sqrt(5*x + 3)*sqrt(-2*x + 1)/(10*x^2 +
 x - 3)) + 112*sqrt(10)*(9*x^2 + 12*x + 4)*arctan(1/20*sqrt(10)*(20*x + 1)*sqrt(5*x + 3)*sqrt(-2*x + 1)/(10*x^
2 + x - 3)) - 42*(135*x + 76)*sqrt(5*x + 3)*sqrt(-2*x + 1))/(9*x^2 + 12*x + 4)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)**(3/2)*(3+5*x)**(1/2)/(2+3*x)**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 3.14556, size = 437, normalized size = 3.64 \begin{align*} \frac{793}{15120} \, \sqrt{70} \sqrt{10}{\left (\pi + 2 \, \arctan \left (-\frac{\sqrt{70} \sqrt{5 \, x + 3}{\left (\frac{{\left (\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}\right )}^{2}}{5 \, x + 3} - 4\right )}}{140 \,{\left (\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}\right )}}\right )\right )} + \frac{2}{27} \, \sqrt{10}{\left (\pi + 2 \, \arctan \left (-\frac{\sqrt{5 \, x + 3}{\left (\frac{{\left (\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}\right )}^{2}}{5 \, x + 3} - 4\right )}}{4 \,{\left (\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}\right )}}\right )\right )} - \frac{55 \,{\left (5 \, \sqrt{10}{\left (\frac{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}{\sqrt{5 \, x + 3}} - \frac{4 \, \sqrt{5 \, x + 3}}{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}\right )}^{3} - 2296 \, \sqrt{10}{\left (\frac{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}{\sqrt{5 \, x + 3}} - \frac{4 \, \sqrt{5 \, x + 3}}{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}\right )}\right )}}{18 \,{\left ({\left (\frac{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}{\sqrt{5 \, x + 3}} - \frac{4 \, \sqrt{5 \, x + 3}}{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}\right )}^{2} + 280\right )}^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(3/2)*(3+5*x)^(1/2)/(2+3*x)^3,x, algorithm="giac")

[Out]

793/15120*sqrt(70)*sqrt(10)*(pi + 2*arctan(-1/140*sqrt(70)*sqrt(5*x + 3)*((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))
^2/(5*x + 3) - 4)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))) + 2/27*sqrt(10)*(pi + 2*arctan(-1/4*sqrt(5*x + 3)*((s
qrt(2)*sqrt(-10*x + 5) - sqrt(22))^2/(5*x + 3) - 4)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))) - 55/18*(5*sqrt(10)
*((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))^3
 - 2296*sqrt(10)*((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5
) - sqrt(22))))/(((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5
) - sqrt(22)))^2 + 280)^2